博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
用贝叶斯定理解决三门问题并用Python进行模拟(Bayes' Rule Monty Hall Problem Simulation Python)...
阅读量:7021 次
发布时间:2019-06-28

本文共 1929 字,大约阅读时间需要 6 分钟。

三门问题(Monty Hall problem)也称为蒙提霍尔问题或蒙提霍尔悖论,出自美国的电视游戏节目《Let’s Make a Deal》。问题名字来自该节目的主持人蒙提·霍尔(Monty Hall)。

 

这个游戏的玩法是:参赛者会看见三扇关闭的门,其中一扇门后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门中的一扇,露出其中一只山羊。主持人其后会问参赛者要不要更换其初始的选择,选另一扇仍然关上的门。

 

那么问题来了,参赛者到底要不要更换其初始的选择呢?

 

解决这个问题需要用到贝叶斯定理:

 

让我们选一个特定的例子来看看:假设三扇门分别为Door A,Door  B,Door C,并且参赛者初始选定了Door A,然后主持人展示了Door  B。那么参赛者是坚持选择Door A还是更换成Door C呢?这就要根据Door A和Door C哪个门后汽车出现的概率较大决定了。

 

也就是说,我们需要解决P(Door A=car|Door A is selected, Door  B is revealed)P(Door C=car|Door A is selected, Door  B is revealed)哪个大的问题。

 

首先,每个门后有车的概率都是1/3:

 

其次,如果Door A门后有汽车,那么Door A被选择的几率是1/3,假设初始选择了Door A,那么Door B被主持人打开的几率是1/2:

 

再次,普通情况下,Door A被选择的几率是1/3,Door B被主持人打开的几率是1/2(因为已经有一扇门被选择了,选择的门不能被打开):

 

同理,如果Door C门后有汽车,那么Door A被选择的几率是1/3,假设初始选择了Door A,那么Door B被主持人打开的几率是1:

 

因此,我们可以看到,P(Door C=car|Door A is selected, Door  B is revealed)是P(Door A=car|Door A is selected, Door  B is revealed)的两倍。也就是说,更换初始的选择将会使我们的获胜几率提高2倍!

 

可以用probability tree来帮助理解一下:

如果对上面的计算公式还有疑问,那么让我们用计算机来模拟一下:

from random import randintfrom random import choiceN = 1000def simulate(N):    m=0   #设置不更换初始选择赢得汽车的次数    n=0   #设置更换初始选择赢得汽车的次数    for i in range(N):  #模拟1000次游戏        win=randint(1,3)  #设置藏有汽车的门,在1-3之间随机选出        bet1=randint(1,3)   #设置初始选择的门,在1-3之间随机选出        remain=[i for i in range(1,4) if i!=win and i!=bet1]  #剩余可选的门(除去初始选择的门和藏有汽车的门)        monty_reveal=choice(remain)  #monty会在剩余可选的门中选择一扇门打开        bet2=6-bet1-monty_reveal  #bet2表示更换初始选择(用6减是因为三扇门加起来等于6)        if bet1==win:  #如果初始选择和藏有汽车的门吻合,那么初始选择的获胜次数+1            m+=1        if bet2==win:  ##如果更换初始选择的bet2和藏有汽车的门吻合,那么bet2的获胜次数+1            n+=1    return n/m print(simulate(N))
2.0211480362537766

 

最后的结果: 更换初始选择获胜的次数差不多是不更换初始选择获胜次数的两倍。

 

三门问题是有些反直觉的,我们可以这样来理解:当参赛者选择Door A时,他的获胜概率是1/3,当主持人展示了Door B门后没有汽车以后,这个信息并没有给参赛者的初始选择带来任何有用的信息 ,选择Door A获胜的概率仍然是1/3,但是鉴于选择Door B获胜的概率降为了0,因此选择Door C获胜的概率变为1-1/3,也就是2/3。

 

参考:

 

转载于:https://www.cnblogs.com/HuZihu/p/9056224.html

你可能感兴趣的文章
简易抽取
查看>>
js转html实体
查看>>
django框架数据库相关操作
查看>>
FreeSWITCH增加iLBC编码
查看>>
PostgreSQL在线安装
查看>>
iOS中有两种支持机制:Notification和KVO(Key-Value Observing)
查看>>
准备从头复习算法
查看>>
SQL SERVER发布与订阅
查看>>
oracle行转列遇到的一个问题
查看>>
Fiddler
查看>>
Spring Cloud 之 服务注册与发现
查看>>
集合 小结
查看>>
confluence
查看>>
猜拳游戏案例
查看>>
jquery mouseout和mouseleave区别
查看>>
iOS逆向之fishHook怎么通过符号找字符串
查看>>
WCF-简单 配置文件
查看>>
[GeoServer]重拾GeoServer之安装篇
查看>>
在选择屏幕添加长文本,换行等等 全在这里
查看>>
Dubbo背景和简介
查看>>